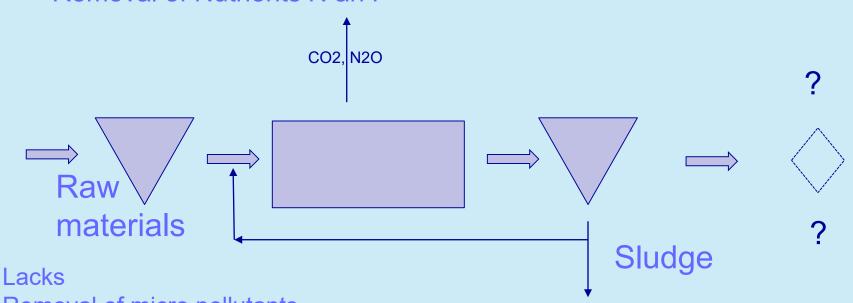
Waterfactory Wilp

EffiSludge Closing Event 2021 - Program

2 December 2021 Frans Visser

WATERFABRIEK V



Why a Waterfactory ?

- Reduction of Oxygen consumption
- Removal of Nutrients N an P

Removal of micro pollutants Removal of micro plastics

Degredation of good materials CO2 and N2O emission

WATERFABRIEK V WILP

Highly innovative physical sewage treatment process (*electro-chemical conditioning and physical separation*).

Crystal *clear water* is made to combat freshwater shortage.

Raw materials are extracted without a negative impact on the living environment.

Aim:

- to produce `*fit for use' high-quality water*
- over 85 % recovery of value resources
- creation, valorisation and improvement of value chains
- become the stepping stone for *replication*


https://www.youtube.com/watch?v=Tb4fzjCTdsU

Proces Waterfactory Wilp

Total capacity of 5 m3/h: 50% sewage and 50% recycle

- 2 periods
 - first with Electro Coagulation (EC)
 - second with FeCl3 dosing

First period

- With EC no stable operations of the plant. Clogging of the NF
- Due of insufficiant formation of Fe3+

Second period

- Stable operations and Proof of Concept
 - Still a lot of research questions

Effluent quality macro pollutants

Macro pollutants						
Parameter	Unit	demand	average	max.		
Suspended solids	mg/l	<3	0,0	<5 ¹		
COD	mg/l	<125	74,2	79		
BOD	mg/l	<20	30	53		
P-total	mg/l	<0,15	0,01	0,05		
N-total	mg/l	<4,8	0,87	1,27		
NH4-N	mg/l	<1,0	0,26	0,63		

BOD levels sensitive for longer retention time and higher temperatures in the sewer system: forming of fatty acids

Effluent quality heavy metals

Heavy metals	5			
Parameter	Unit	Demand	Influent	Effluent
Arsenic As	ug/l	0,5	2,7	<1*
Cadmium Cd	ug/l	0,08	0,2	0,077
Chroom Cr	ug/l	3,4	6,3	1,6
Copper Cu	ug/l	2,4	87,5	1,0
Mercury Hg	ug/l	0,00007	0,1	<0,05*
Lead Pb	ug/l	1,2	13,6	0,8
Nickel Ni	ug/l	4	6,4	0,9
Zink Zn	ug/l	7,8	241,7	5,2
	stov	WATERFABRIE	K 🔊 * //ke *	vallei en

Effluent quality micro pollutants

Micro pollutants: 11 guide materials (2020)

Parameter	Influent (µg/l)	Effluent (µg/l)	Rendement
1,2,3-benzotriazool	8,58	4,12	52%
som 4- en 5-methyl-1H-benzotriazool	1,5	0,668	51%
Carbamazepine	1,13	0,768	32%
Claritromycine	0,146	<0,01	100%
Diclofenac	0,926	<0,088	90%
hydrochloorthiazide	3,6	3,06	15%
Metoprolol	4,14	0,164	96%
Propranolol	0,152	<0,01	100%
Sotalol	1,68	0,05	97%
Sulfamethoxazol	1,7	<0,202	88%
Trimethoprim	0,188	<0,01	100%
Average: 7 best of 11 g	96%		

Next step

- Build a demonstration plant with a capacity of 50 m3/h
- Research & development (3 years)
 - Scale up
 - EC (make it work)
 - Effect of the seasons on the performance of the plant
 - Performance of the NF-membranes and IX-units:
 - determine where the pollutants are
- Complete CO2-footprint comparison Fysisch-chemical vs Activated sludge plant
- Aspects
 - Construction
 - Operation (chemicals/energy)
 - Proces emissions

Questions

