

The EffiSludge for LIFE project: results and conclusions from the demonstration project

Francesco Ometto, PhD R&D Manager at Scandinavian Biogas Project Manager for EffiSludge for LIFE

Stockholm, 2nd Dec. 2021

Disclaimer: Scandinavian Biogas, Biokraft, Norske Skog Skogn, the European Agency and the European Commission are not responsible for any use of the information here provided. All information are in relation to the sole EffiSludge for LIFE demonstration project.

EffiSludge is an operational concept that allows industrial wastewater treatments to save energy and chemicals while generating biogas.

EffiSludge for LIFE LIFE14 CCM/SE/000221 (2015-2021)

Scandinavianbiogas

A long journey to make it real...

© SBF 2021 - Francesco Ometto

The Pulp and Paper Industry - Europe

Already in 2011, the PPI decided to decarbonising by 80%.

by Confederation of European Paper Industries (www.cepi.org)

The value of industrial wastewater

The **biogas potential** from industrial wastewater is **142 TWh**

per year (45 TWh from PPI)

Dairy products

- Juice production
- Meat from sheep
- Vegetable oils production

Wine, beer and spirits

Biodiesel production

Potatoes

- irits Ethanol production
- ■Tomato ketchup and sauces ■Meat from bovine
 - Sugar production

Pulp production
Meat from pigs
Yeast production

"The role of biogas production from industrial wastewaters in reaching climate neutrality by 2050" by European Biogas Association

Sustainability impact of EffiSludge

EffiSludge = Industrial Symbiosis

Industrial wastewater treatment (WWT)

Base case

Industrial wastewater treatment (WWT)

Scandinavianbiogas

100%

Nitrogen saving

80%

as commercial chemicals are replaced with nutrients from fish waste, chemical addition is replaced from fish waste first processed via anaerobic digestion for biogas production

EffiSludge targets

50% Energy saving

due to anaerobic digestion of wastewater prior the aerobic step and reduced biosludge age in the activated sludge process

EffiSludge targets

100%

Nitrogen saving Phosphorous saving

as commercial chemicals are replaced with nutrients from fish waste, chemical addition is replaced from fish waste first processed via anaerobic digestion for biogas production

50% Energy saving

due to anaerobic digestion of wastewater prior the aerobic step and reduced biosludge age in the activated sludge process

Biogas to replace fossil fuels

generated from wastewater and biosludge in co-digestion with nutrient rich biomass

EffiSludge targets

100%

80%

Nitrogen saving Phosphorous saving

as commercial chemicals are replaced with nutrients from fish waste, chemical addition is replaced from fish waste first processed via anaerobic digestion for biogas production

50% Energy saving

due to anaerobic digestion of wastewater prior the aerobic step and reduced biosludge age in the activated sludge process

Biogas to replace fossil fuels

generated from wastewater and biosludge in co-digestion with nutrient rich biomass

Zero CO₂

emissions from wastewater treatment

thanks to the combined effect of nutrient recovery, optimized biosludge production and biogas production

EffiSludge demonstration

Norske Skog

500 000 ton/year of newsprint 20 000 m³/day wastewater

2015 Ground work started

2016-2017 Engineering work

2018

LILLIN CIDE

June Inoculation CSTRs

July Start-up operation

September

First delivery of LBG

November Start-up of ECSB

Biogas production

Two different production technologies applied					
	External Circulation Sludge Bed (ECSB)	semi-Continuous Stirred Tank Reactor (CSTR)			
Substrate	Process water after primary sedimentation from the mill	Fish waste from external, WAS from the mill + other			
HRT	1-2 hours	15-20 days			
Design capacity	2.5 million Nm³ CH₄/year	12 million Nm³ CH₄/year			
	ECSB ECSB	BIOGAS			

(33 000 m³) (Activated Sludge Treatment)

Fish waste is delivered by boat

LBG is transported from site to final users

HH

About 9000 tons (12 million 14m³) of methane per year: 2-3 trucks per day (appr. 18 ton load).

Industrial wastewater treatment (WWT)

Scandinavianbiogas

Industrial WWT + Biogas production

Industrial WWT + Biogas production

Nutrient recirculation

Energy savings

- The ECSB reduce the loading of sCOD into the WWT by 50%.
- EffiSludge counts on a reduced sludge age for higher energy content in the WAS, resulting on reduced aeration demand in the WWT

EffiSludge targets at Skogn

as commercial chemicals are replaced with nutrients from fish waste, chemical addition is replaced from fish waste first processed via anaerobic digestion for biogas production

Energy saving

due to anaerobic digestion of wastewater prior the aerobic step and reduced biosludge age in the activated sludge process

Biogas*

generated from wastewater and biosludge in co-digestion with nutrient rich biomass

* 50% process flow, limited WAS usage and no sludge age reduction

Zero CO₂

emissions from wastewater treatment

thanks to the combined effect of nutrient recovery, optimized biosludge production and biogas production

Key parameters for evaluation of the reduction of fossil CO₂-release by implementing EffiSludge

Parameter	Unit	Before EffiSludge ¹	Present EffiSludge ²	Future EffiSludge ³
Sludge age	days	13	12	6-8
Energy demand	MWh/day	30	23	15
Nitrogen addition (urea)	kg N/day	1000	100	0
Phosphoric acid addition	kg P/day	100	10	30
Biomethane from biosludge	Nm³/day	0	180	1700
Biomethane from direct WWT	Nm³/day	0	3400	7100

¹The Before EffiSludge case is calculated from actual values for the year 2017. ²The Present EffiSludge case is based on data from the full-scale implementation at Skogn for November 2019. 65% of the wastewater was during this period treated in the anaerobic wastewater unit while 100 m³/day of the biosludge was digested together with nutrient rich residues from the Norwegian fish industry. The biomethane potential of the biosludge was set to 81 Nm³/tonne VS for this sludge, that value is based on actual BMP measurements. ³The Future EffiSludge Case assumes that all wastewater is treated in the anaerobic unit giving a 50% reduction of the organic material in the wastewater before going to aeration. The amount of biosludge digested has been assumed to increase due to the shorter sludge age (a factor of 0,28 kg SS/kg of COD_{red} was used for estimating the amounts). The biomethane potential for this biosludge was assumed to be 250 Nm³/tonne VS.

Annual carbon emissions

Annual carbon emissions

Scandinavianbiogas

EffiSludge under different carbon factor conditions

EffiSludge achievement under different carbon factor conditions

One year of EffiSludge

Climate Change Mitigation effect of EffiSludge equals to the amount of carbon dioxide fixed by 1 million pine trees in a year.

Savings 9000 tonnes CO_{2eq}

= **LMillion** pine trees

Such a forest is roughly the same size as Copenhagen airport and three times the size Central Park in New York.

www.scandinavainbiogas.com/effisludge

General public

the project website offers an overview of the project development over time. Our regular newsletter "EffiNews" and twits reached thousands in Europe and beyond.

Target group

stakeholders from the pulp and paper industry and the biogas sector have been the key target groups. Our workshops have created opportunities for open discussions.

Experts

presentations on conferences, seminars, online events as well as scientific publication have disseminated the project to both the academia and the industry and also connected us with other projects in the field.

Policy Maker

the development of the project promoted a possible inclusion of the EffiSludge concept as a Best Available Technology (BAT).

Thank you for listening!

🖌 Scandinavianbiogas

OBIOKRAFT

Francesco Ometto, Ph.D. R&D Manager at Scandinavian Biogas Adjunct Lecturer at Linköping University

francesco.ometto@scandinavianbiogas.com +46 (0)70 626 63 30

we deliver what we promise with passion

