

Workshop Effisludge

General aspects

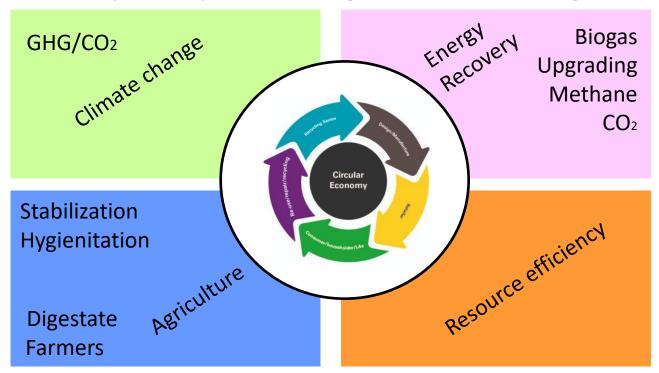
Time: 01/09/2015 – 28/02/2019 (42 months)

Coordinator : Depuración de Aguas del mediterráneo (DAM)

Budget: 1,54 M€

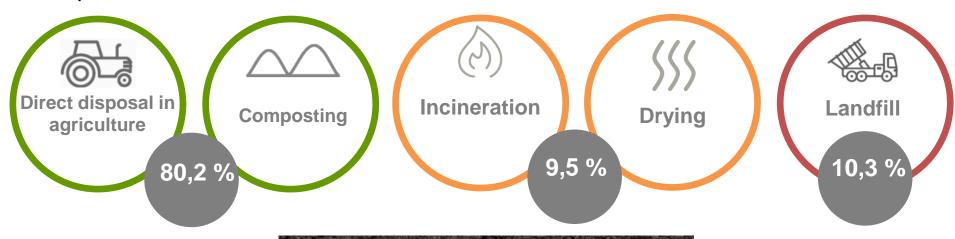
Partners:

Regional Entity of sanitation and wastewater in Murcia



Introduction

AD of sewage sludge is a process for the stabilization of the sludge and the conversion of an important part of the organic matter into biogas.



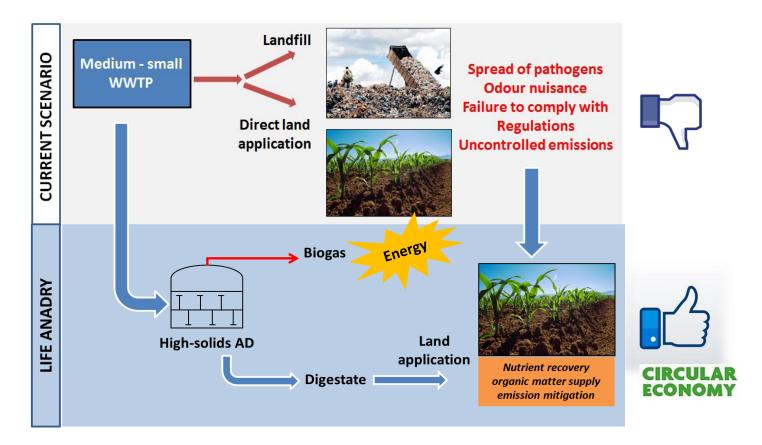
1. Situación actual

Introduction

Spain

Europe

Fuente: WRC and RPA for the European Comision 2010



"Life-ANADRY" project has received funding from the European financial instrument for the Environment (LIFE+) programme (LIFE14 ENV/ES/000524).

Introduction

Main objective

To demonstrate the **technical**, **economic** and **environmental feasibility** of the correct environmental management of sludge in medium to small size urban wastewater treatment plants (WWTPs), which do not have anaerobic digestion.

Specific objectives

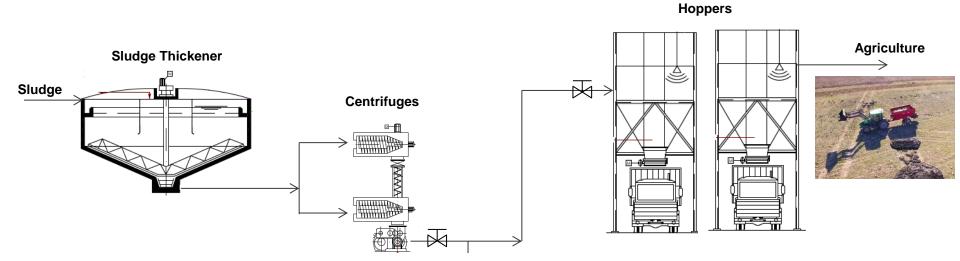
- Demonstrating the technical-economic viability of dry AD technology.
- Design and construction of 20m³ the dry anaerobic prototype.
- Implementation of the prototype in thermophilic and mesophilic conditions.
- Improving the quality of the sludge produced in WWTP.
- Reducing GHG gas emissions due to the reduction sludge minimization and the dry AD.
- ❖ Promoting the inorganic fertilizers substitution due to the use of sludge recycled in agriculture.

BABABABA

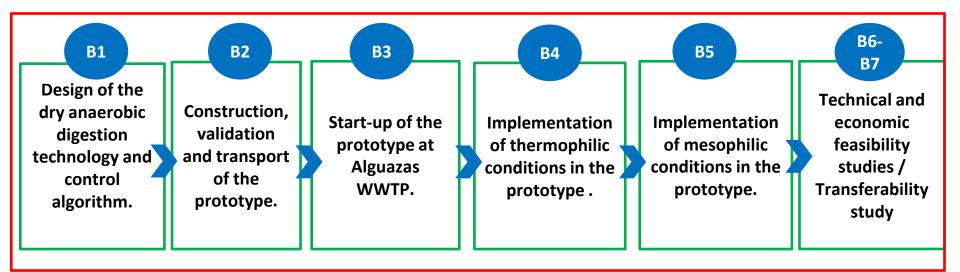
Location of the project

- ☐ Alguazas WWTP (Murcia, Spain).
- Urban WWTP small/medium size.
- \Box Flow aprox: 3500 m³/d.
- Population: 60,000 inhab.
- ☐ Sewage sludge production: 10 t/d.
- Configuration: Extended

aeration/carrousel reactors.



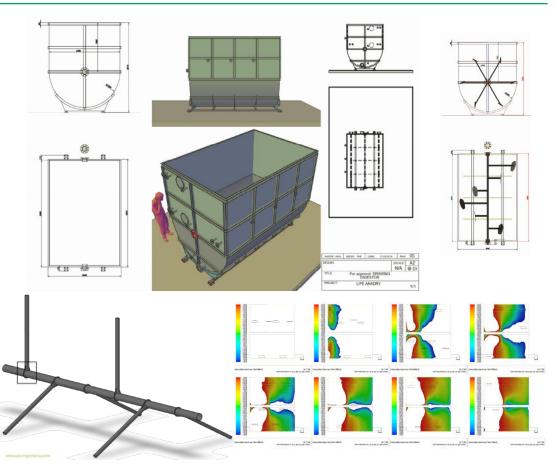
Alguazas WWTP is a small/medium sized urban plant that has not anaerobic digestion



Current scheme in the Alguazas WWTP

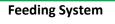
Implementation actions





B1

Design of the dry anaerobic digestion technology and control algorithm.

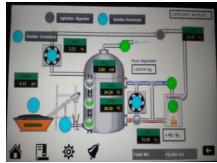


B2

Construction, validation and transport of the prototype.

Effluent Tank

Heating system



Digester

Agitation system

Control system

B2

Construction, validation and transport of the prototype.

<u>Video</u>

Start-up of the prototype at **Alguazas** WWTP.

- Thermophilic biomass by organic fraction of municipal solid waste (OFMSW) treatment plant (Botarrell).
- Volume=20 m³
- HRT= 20d
- Flow rate: 1000 kg/day

B3

Start-up of the prototype at **Alguazas** WWTP.

Analysis of the influent

Influe	Influent	
COD t (mg/l)	70225 ± 8435	
DM(%)	15.5±1.2	
VS (%)	76.5 ± 11.9	
TKN (%)	3.2 ± 2.6	
TAN (mgN/l)	2808 ± 574.7	
рН	7.1 ± 0.5	
Salmonella sp	existence	
E.coli CFU/100ml	7.5 x 10-3	

Best parameters to control AD:

Volatile fatty acid (VFA)

Alkalinity (ALK)

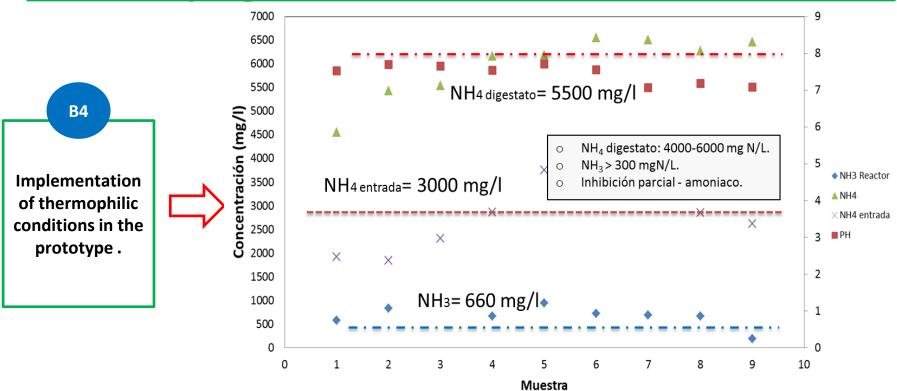
Dry matter (DM)

- Volatile matter (VM)
- Biogas (CH₄, CO₂, H₂S, O₂)
- рН

Start-up of the prototype at **Alguazas** WWTP.

B3

Allows checking of the AD process state plus predicting and avoiding process disturbances (acidification, inhibition..)


B4

Implementation of thermophilic conditions in the prototype.

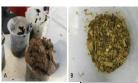
- Temperature: 55°C
- Hydraulic Retention Time (HRT): 40-30-20-15 days
- O Yield in terms of:
 - Volatile solid destruction
 - Hygienization: *E.coli* and *Sallmonela spp*.
 - Biogas production
 - Stability of the process

Higher than 250mg/l of free ammonia cause an partial inhibition of methanogenic activity (Rajagopal *et al.*,2013; Yenigün *et al.*,2013)

Biomethane Potential test (BMP)

B4

Implementation of thermophilic conditions in the prototype.



1

T= 55°C; pH= 7,5 - 8,0

- -Ammonium Nitrogen < 2500 mg/l
- -Co-digestion, COD/N (Corns Silage, rice straw, other)

Influence on the metanogenic stage 60% Methane

Sulphide control

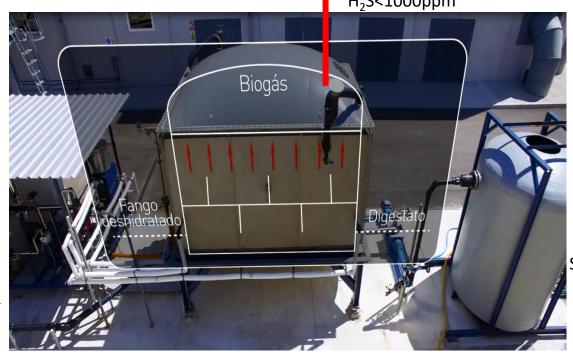
- Fe(0H) microstructural
- Load= 3 Kg/d
- > Removal: 10,000 ppm.

Implementation of thermophilic conditions in the prototype.

B4

La siguiente tabla ilustra los beneficios de utilizar Mircronox Biox en lugar de los métodos alternativos de desulfurización de biogás:

	Micronox ON16	Cloruro de hierro	Desulfurización biológica
Corrosividad	* * *	***	**
Sustancias nocivas	***	***	***
Concentración de metano	***	***	* *
Manipulación	***	***	* *
Biología del reactor de fermentación	***	* *	**
Efectividad	***	* * *	* *
Riesgo de explosión	***	***	*
Velocidad de reacción	* *	* * *	*
Efecto "Buffer"	**	***	***
Subproducto de reacción no deseado	Ninguno	Ácido clorhídrico	Ácido sulfúrico



Digester HRT=40-30-20-15d pH = 7,5-8,0T= 55 °C V agitation= 5-10 rpm

INFLUENT

Q = 500 - 1300 kg /day%MS=14-17 %MV=75,0 E. Coli = 6.9×10^4 Salmonella= Presencia

Biogas

CH₄= 30-40%

 $CO_2 = 60 - 70\%$

H₂S<1000ppm

EFFLUENT

%MS=12 %MV=60,0

E. Coli = < 10

Salmonella= Ausencia

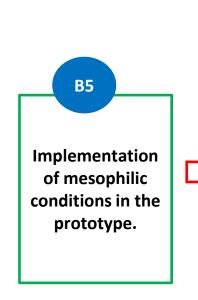
"Life-ANADRY" project has received funding from the European financial instrument for the Environment (LIFE+) programme (LIFE14 ENV/ES/000524).

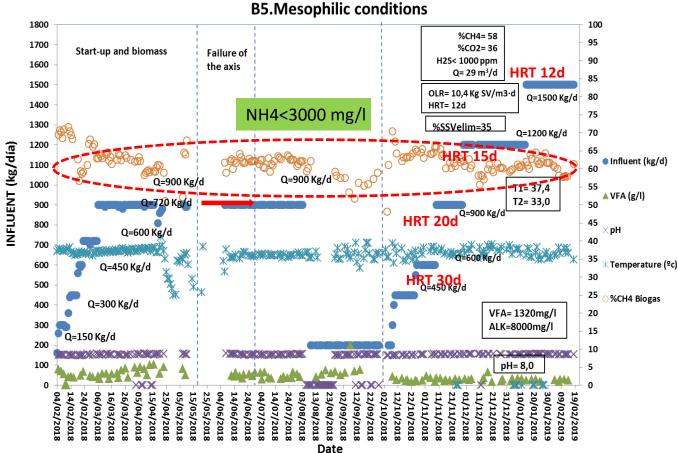
Inoculation: January 2018, 9 m³ biomass Wet AD WWTP Alzira

Ratio: 50%-50% (dehydrated sludge/Inoculum)

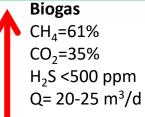
HRT: 30-20-15-12 d

B5


Implementation of mesophilic conditions in the prototype.



"Life-ANADRY" project has received funding from the European financial instrument for the Environment (LIFE+) programme (LIFE14 ENV/ES/000524).



B5

Digester
HRT=30-20-15-12 d
pH>8,0
T= 35 °C
V agitation= 5 rpm

INFLUENT

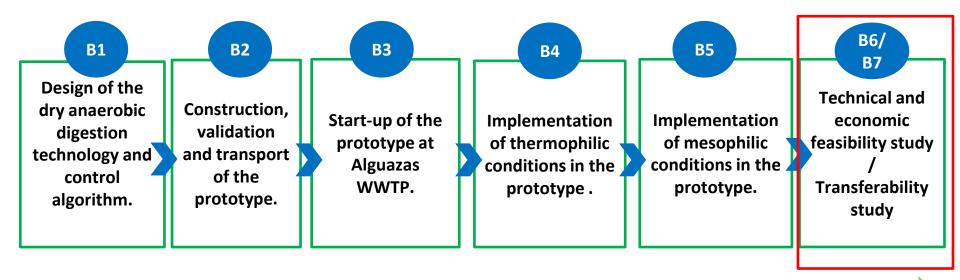
Q= 500 -1300 kg /day %MS=14,5 %MV=77 E. Coli = 2,5x10³ Salmonella= Presencia

EFFLUENT

%MS=10,7 %MV=72 E. Coli = 4x10^1 Salmonella= Ausencia VSD= 30-35% VFA= 1500 mg/l NH4= 3000 mg/l

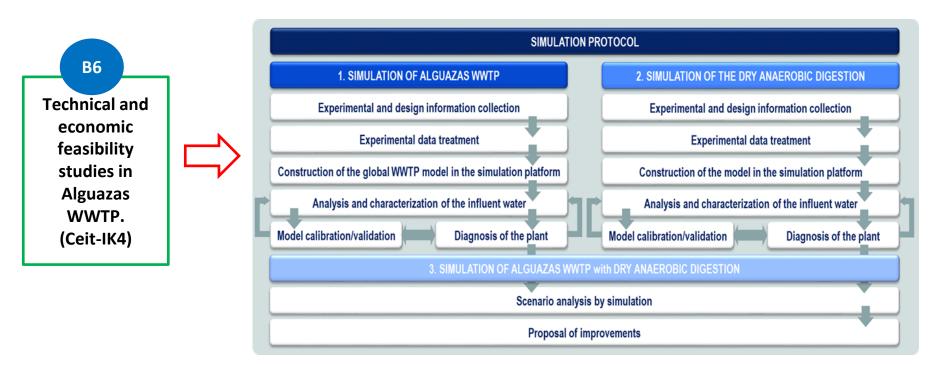
General conclusions

Thermophilic (55°C)


Mesophilic (35°C)

- Complete higienization (E.coli and Salmonella).
- Low biogas (partial inhibition /aclimatation) at HRT 40-30-20d.
- High free ammonia, instability.
- Control Sulphide with FeOH (H2S<500ppm)

- Complete higienization (>90% E coli and salmonella).
- Stable operation at HRT of 30, 20 15 and 12d
- High production biogas (Q≈ 25 m3/d; CH4 >60%).
- Higher performance (hig, stab, and biogas).
- Control Sulphide with FeOH (H2S<500ppm)



Implementation actions

Simulation protocol: WEST software

- 4 Alternatives
- **Economic study**
- Environmental assessment
- Transferability action

Alternative 1: Implementation at full scale for medium-size and small-size WWTP

Alternative 4: **Implementation** in other sectors

Analysis of feasibility and transferability

Alternative 3: Implementation at a centralized plant: centralized management & treatment

Alternative 2: **Implementation** at full scale for new constructions of WWTP.

Alternative 1. Existing small or medium capacity WWTP without anaerobic.

- Small WWTP (Extended aireation; Q>2000 m3/d; <10.000 inhab-eq)
- Medium WWTP(Convencional; Q= 2000-15000m3/d; 10.000-50.000 inhab-eq).

Alternative 2. Implementation at full scale for new constructions of WWTP.

New constructions WWTP (Convencional >100.000 inhab-eq)

Alternative 3. Implementation at a centralized plant.

Selection of WWTP based on distance (100-150 km), in order to determine in which area the implementation of this technology is economically viable.

Alternative 4. Implementation in other sectors.

Information collected from various companies in order to determine the characteristics of the influent. Companies in the area, canneries, bibliography, etc.

√ Economic study

For the cost study development, the next work structure is followed:

Total = 72 scenarios

Case 1a – Thermal valorization Base line WWTP (5000m3/d) Case 1b – Thermal and electrical valorization (CHP) Case 1c - Biomethane production via biogas upgrading for injection ir the natural gas Case 1d - Biomethane production via biogas upgrading for use compressed as biofuel (CBM) Two disposal options: agriculture and composting

Comparative

Comparison between the operational cost of baseline and system modified with Dry AD

Calculation of the investment costs of the new required facilities

Profitability and sensitivity analysis

✓ Economic study: confusions

The best option in mesophilic conditions is the valorization of biogas via dual engine Alternative 1 (diesel-biogas). Undigested sludge were removed at a cost of 35 €/ton for example, an IRR of 17.3% and a return period of 7.1 years would be obtained. Conclusions The best option Electrical valorization (CHP)) is the most advantageous, since it would allow obtaining a IRR of 21.5% and an investment return time of 5.7 years if the non-digested sludge was managed. The best option is a centralized plant to treat the sludge produced in several WWTPs, all adding a treatment capacity of 125,000 m3/d of wastewater, and valorizing the produced biogas in a cogeneration engine. That system offers a 25.2% IRR and 4.6 years of investment return time. The best performance is the 4'a, which corresponds to the DAD system with codigestion of organic waste under mesophilic conditions and valorization of the biogas in the boiler.

Thank you for your attention!

For further information:

www.life-anadry.eu

