Opportunities for the pulp and paper industry to recovery energy from residues: industrial symbiosis with biogas as the hub

Jörgen Ejlertsson
Process, research and Development Director at Scandinavian Biogas Fuels AB

Webinar – Effislude
12th November 2020
Mission:

Scandinavian Biogas mission is to contribute to and facilitate the transition from fossil fuel to renewable energy
Scandinavian Biogas in brief

• Founded in December 2005
• Former Prime Minister of Sweden Göran Persson as Chairman of the Board
• Globally leading ability to prove and optimize concepts in both laboratory, pilot- and full scale.

• Head office in Stockholm
• Waste management and Biogas production in Sweden, Norway and Korea
• R&D and Process Department at Linköping University
• 70+ employees – specialists in biogas processes and technology
Current plants in SBF portfolio

<table>
<thead>
<tr>
<th>Projects running</th>
<th>Client / Partner</th>
<th>Substrate</th>
<th>Production GWh/y (est.)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henriksdal</td>
<td>Stockholm Vatten: SE</td>
<td>Sewage sludge, EOM</td>
<td>100 – (200)</td>
<td>Well functioning plant with proven technology. Extended 2015-16 with 3rd up-grading line and EOM dosing</td>
</tr>
<tr>
<td>Södertörn</td>
<td>SRV: Stockholm, SE</td>
<td>Food waste</td>
<td>75 – (85)</td>
<td>Launched in Aug 2015. Top of the line process solutions with off-the-shelf hardware. HOLD concept based</td>
</tr>
<tr>
<td>Ulsan</td>
<td>City of Ulsan: Korea</td>
<td>Sludge and food waste</td>
<td>61 (60)</td>
<td>Well functioning plant. Appointed to be the best food waste based biogas plant in Korea.</td>
</tr>
<tr>
<td>Trondheim</td>
<td>Skogn: Trondheim, NO</td>
<td>Fish waste, slaughter waste, paper mill sludge</td>
<td>95 (125)</td>
<td>Project have CSTR for fish farming waste and ECSB for pulp and paper process water. Liquefied methane for sale. HOLD concept based</td>
</tr>
</tbody>
</table>
Scandinavian Biogas - 2019 Group performance

352 GWh
Group sales 2019

198 ktonnes
Organic waste handled 2019

95 ktonnes
CO₂ reduction 2019
Industrial symbiosis engages diverse organisations in a network to foster eco-innovation and long-term culture change.

Lombardi and Laybourn, 2012
Possible opportunities for symbiosis with a mill

- Biogas up-grading
- Process heat

Biogas substrates
- H_2 and CO (syngas)
- Fed directly to digesters

Dewatering

Steam (6 bar)
Hot water 60-80°C
Bark and fibers

Process water
Bio-sludge
Methanol
Fibers

Heating other industries
District heating
CHP
Pellets to sell
Soil improver
Biodiesel
Possible connections

- Biogas
- Liquid digestate
 - Centrifuge accept (cake)
 - Nutritious rejected water

Vehicle fuel
- Process water treatment
 - Electricity consumption
 - Need for Nitrogen and Phosphorous

Internal substrates possible for biogas production on a generic mill are currently not big enough for industrial scale biogas production – 20-40 GWh.

However – the addition of such biogas to another biogas plant can be synergetic!
Biogas production at PPI – End users

Internal:
- Heat and power production
 - Boilers with environmental restrictions
- Replacement of fossil fuel
 - IR-drying of coating
- Vehicle fuel
 - Used for own vehicles

External:
- Vehicle fuel
 - Up-graded and sold on the market
 - Raw gas sales to gas company for upgrading to vehicle fuel
- Green gas
 - Up-graded and injected to gas grid as green gas
Traditional treatment of process water streams at PPI

Process water from factory → Pre-sedimentation → Waste activated sludge → Recipient

Pre-sedimentation → Sludge tank → Bio sludge

Fiber sludge → Sludge dewatering → Sludge cake to incineration or compost

Rejected water → Sludge dewatering
Possible treatment of process water streams at PPI

Example 1

- Process water from factory
- Pre-sedimentation
- Fiber sludge
- Sludge tank
- Sludge dewatering
- Sludge cake to Incineration or compost
- Biogas
 - UASB
 - CSTR
- Waste activated sludge
- Bio sludge
- CSTR
- Internal substrates: Methanol, Fibers
- Recipient

Rejected water
Possible treatment of process water streams at PPI

Example 2

Process water from factory → Pre-sedimentation → UASB or CSTR → Waste activated sludge → Recipient

- Fiber sludge
 - Sludge tank
 - Sludge dewatering
 - Rejected water
 - Biogas
 - Internal substrates: Methanol, Fibers
 - External substrates: Cow manure, Food waste, Ley crops, Fish waste etc.

- Bio sludge
 - Sludge tank
 - CSTR
 - Biogas

- Liquid digestate to fertilizer
- Sludge cake to fertilizer

@SBF 2020
An example of industrial symbiosis between biogas production and pulp and paper industry
Skogn site - Norway

June 2014

Pulp and Paper mill area

AD plant for LBG

© SBF 2020
2011
Project started with agreements and lab scale reactors

2015
Ground work started

2016-2017
Engineering work
2018

June
Inoculation CSTRs

July
Start-up operation

September
First delivery of LBG

November
Start-up of ECSB
NS AEROBIC BASIN
(33 000 m³)
(Activated Sludge Treatment)

NS SECONDARY sedimentation

ECSB units
(4 000 m³)
treating effluents from first sedimentation

CSTR digesters
(13 000 m³)
treating WAS and fish waste

LBG storage
(350 m³)
and gas upgrading

SECONDARY digester + GAS HOLDER

STORAGE TANKS (6X)
for fish silage and substrate

EVAPORATION
for part of the rejected water

NS SECONDARY sedimentation
Original idea of integration of Biokraft at the Skogn site

- Pre-sedimentation
- ECSB
- Aeration
- Post-sedimentation
- Recipient
- Biokraft
- Substrate containers
- Digesters
- Gas-upgrading
- Liquid methane (LBG)
- Bioslam
- Biogass
- N-rikt filtrat
- Solid biofertilizer
- Liquid biofertilizer
Treated volume of fish waste
\(\sim 41\,000\) ton per year
LBG is transported from the site to final users

About 9000 tons (12 million Nm\(^3\)) of methane per year:
2-3 trucks per day (appr. 18 ton load).
Mill’s WWTP – Today (mass balance)

20 000 m3/d

Nitrogen and Phosphorous

1 ton/d as Urea
120 kg/d as Phosphoric acid

40 ton/d as sCOD

45-50 MWh/d for the WWTP (ca. 60% from aeration)

© SBF 2020
Mill’s WWT – EffiSludge (mass balance)

- **Wastewater paper mill**: 20 000 m³/d
- **Primary clarifier**
- **Neutralization basin**: Reduced Nitrogen and Phosphorous
- **AD (UASB)**: (50% sCOD reduced) 0 ton/d as Urea, 95 kg/d as Phosphoric acid
- **Secondary clarifier**: RAS WAS
- **Gas upgrading**: 50 000 Nm³/d as Biogas
- **AD (CSTR)**: 25 ton/d as sCOD
- **Evaporation**: 150 m³/d Rejected water (N) 50 ton/d
- **Dewatering**
- **Sludge tank**
- **Incineration**: 28 MWh/d for the WWTP
- **Fertilizer**: 0 ton/d as Urea, 95 kg/d as Phosphoric acid
- **Dewatering Fertilizer**: 280 m³/d (3-4 %TS)
- **Evaporation**: 115 m³/d (30-35% TS) FISH WASTE
Urea dosing (m³/day)

80-90% saving!
Ongoing project linked to the Skogn site

Research and Innovation is achieved thanks to national and international collaborations
EU funding for climate change mitigation (CCM)

This project has been funded with support from the European Commission.
Project number: LIFE14 CCM/SE/000221

A cooperation between

Scandinavian biogas
BIOKRAFT
Norske Skog

© SBF 2020
Thanks for the attention!

Jörgen Ejlertsson, R&D Director
Jorgen.ejlertsson@scandinavianbiogas.com
+46 (0)73 993 95 73

Francesco Ometto, R&D Manager
francesco.ometto@scandinavianbiogas.com
+46 (0)70 626 63 30
…follow our project developments on twitter #EffiSludge…