

revis bioenergy GmbH

Biomethane Trebsen

Contents

- I. revis bioenergy GmbH
 - I. the company
 - II. references
- II. Project Biomethan Trebsen
 - I. Waste water treatment paper mill
 - II. Facts and figures

revis bioenergy GmbH

- head office: Münster (Westfalen)
- built, own & operate of biomethane plants
- biomass upgrading and wastewater treatment systems
- biomethane feed into the grid:
 2018 approx. 490 GWh
 2020 approx. 800 GWh

revis bioenergy GmbH

revis bioenergy GmbH

biomethane Trebsen: the paper mill

- Est. 1893 in Trebsen/Mulde
- Independent, family owned company
- Currently 127 employees
- 24/7 operation in a 5-shift-system
- Production of 240.000 t/a of liners, flutings and specialities from <u>100 % recovered paper</u>
- 1 paper machine with a width up to 4.300 mm
- Grammages ranging from 120 to 280 g/m²
- Share of export approx. 70 %

biomethane Trebsen: water treatment / biogas production

poultry profit [®] by revis

8

- Anaerobic stage consists of two parallel operated reactors ${\color{black}\bullet}$
 - Voith R2S for 22,5tCOD/d
 - IR for 30tCOD/d
- Aerobic stage consists of five basins in a line and a final clarifier lacksquare

biomethane Trebsen: water treatment / biogas production

- Major part of degradation in basin 1 & 2
- Denitrification in basin 5
- Biogas from anaerobic stage to be treated in a conditioning line
 - 70% methane, desulphurisation
 - up to 13,000m³/d

revis bioenergy

revis bioenergy biomethane Trebsen: water treatment / biogas production

- COD of effluent ranges between 6,000 and 9,000mg/l
 →conventional aerobic treatment is limited to max. 2,000mg/l
- Anaerobic first stage advantages:
 - Easy to degrade components, mainly starch and organic acids from its decomposition
 - effective Reduction of COD by >80%, BOD by >>80%
 - HRT ranging between 6-12h
 - good mass balance due to low biomass production → COD-load of up to 22t/d would create huge amounts of sludge if treated aerobically
 - water temperature from paper mill allows operation without additional heating
- Aerobic second stage is still needed to meet regulatory water quality parameters [COD (TOC),BOD, N (Tnb), P]

revis bioenergy biomethane Trebsen: water treatment / biogas production

Typical reactors – why choose an internal circulation reactor?

- Wastewater from paper mills is easy to degrade and contains minor amounts of suspended solids
- IC-reactors allow high organic loading rates & low retention times
- high effectiveness leads to low excess sludge production in aeration
- Internal circulation is driven by biogas production, only external circulation path needs energy
- Height of the IC-reactors (up to 30m) cause high solubility of CO2 in effluent → methane content is very high (up to 80%)

biomethane Trebsen: water treatment / biogas production

Treibhausgasemissionen

biomethane Trebsen: facts and figures

upgrading-plant

injection-plant

biomethane Trebsen: facts and figures

- 1t of paper leads to 0.025-0.035kg of COD, average ~0.028t COD/t
- 1t of COD yields 350m³ of methane
- biogas production rate is variable and quickly changing
- biogas contains between 5,000 and 22,000ppm of H2S
- → <u>need to get rid of it without adding</u> <u>inert gases</u>
 - H2S: <100 ppm / < 1ppm
 - O2: < 1 Vol.-%

revis bioenergy

biomethane Trebsen: facts and figures

year	2015	2017	2019	2023	
production	220.000	240.000	262.991	550.000	netto to/a
	230.953	251.948	276.084	577.382	brutto to/ a
production days	355	355	355	355	
reject share	8%	8%	8%	8%	
spez. COB	28	28	28	28	kg/to AP
degration R2S	83%	83%	83%	83%	
spec. Gasproduction	0,53	0,53	0,53	0,53	Nm³/ kg CSB
gasproduction					
year	3.072.266	3.351.562	3.672.628	7.680.664	Nm³/a
day	8.654	9.441	10.345	21.636	Nm³/d
average	361	393	431	901	Nm³/h
top	541	590	647	1.352	Nm³/h
methane					
year	1.843.359	2.010.937	2.203.577	4.608.398	Nm³/a
day	5.193	5.665	6.207	12.981	Nm³/d
average	216	236	259	541	Nm³/h
top	325	354	388	811	Nm³/h
thermal input					
vear	20 332 253	22 180 640	24 305 453	50 830 634	kWh
dav.	57 274	62 481	68 466	143 185	kWh
average	2 386	2 603	2 853	5 966	kWh
ton	3 580	3 905	4 279	8 949	kWh
	0.000	0.000	7.210	0.040	

biomethane Trebsen: facts and figures

Wastewater from paper mill

Bio-LNG: 3.400 to/a 12 Mio. transport km/a

minus 14 Mio. to $CO_2 d/a$

4.6 Mio. m³ methane/y

Thanks for your attention!

revis bioenergy GmbH Lippstädterstr. 42 48155 Münster

fon + 49 251 - 60 98 45 - 12 fax + 49 251 - 60 98 45 - 22

www.revis-bioenergy.de