Deutsches Biomasseforschungszentrum DBFZ gemeinnützige GmbH

Disintegration Technologies – Impacts on Biogas Process and Profitability Dr. Britt Schumacher, Tino Barchmann, Dr. Jan Liebetrau

IBBA-Workshop ,Pretreatment of lignocellulosic substrates for biogas production' Malmö/Sweden, 10th of September 2015

DBFZ – Development, Mission, Structure

Development:

- Founded on 28th February 2008 in Berlin as gemeinnützige GmbH
- Sole shareholder: Federal Republic of Germany, represented by the Federal Ministry of Food and Agriculture (BMEL)

Mission:

The key scientific mission of the DBFZ is to provide wide-ranging support for the efficient integration of biomass as a valuable resource for sustainable energy supply based on applied scientific research.

Structure:

About 200 employees until 12/2014 in the administration and the four research departments.

General Management:

Prof. Dr. mont. Michael Nelles (scientific) Daniel Mayer (administrative)

Fig.: DBFZ

Research focus areas and structure

The four research focus areas

- Systemic contribution of biomass
- Anaerobic processes
- Processes for chemical bioenergy sources and motor fuels
- Intelligent biomass heating technologies
- Catalytic emission control

Organizational structure: the four research departments

Applied class research along the entire supply chain

Biochemical Conversion Department

Head of Department

Dr. -Ing. Jan Liebetrau Jan.Liebetrau@dbfz.de

Research focus areas / working groups

- Characterization and design of anaerobic processes
- Process monitoring and simulation
- Biogas technology
- System optimization
- UFZ Working Group "MicAS"

Research services (selection)

- Discontinuous and continuous AD-Test up to full scale
- Process development for special substrates
- Consulting
- Model-based process simulations
- Acquisition of data on biogas plants in Germany
- Emission measurements and leak detection
- Ecological and economic assessment
- Policy advice for the biogas sector

Equipment – lab-/full-scale digesters

SE.Biomethane

Small but efficient –Cost and Energy efficient BioMethane Production

- Supported by: German Federal Ministry of Food and Agriculture (BMEL) (FKZ 22028412)
- Partners: Ventury GmbH Energieanlagen (Germany), Poland, Sweden
- Duration: 02/2013 04/2016
- Focus: auto-hydrolysis, thermal-pressure-hydrolysis, plug flow digestion of straw, dung, gas purification

Gefördert durch:

Bundesministerium für Ernährung

und Landwirtschaft

aufgrund eines Beschlusses des Deutschen Bundestages

Disintegration Technologies

Disintegration – Goals & Challenges

- increase of the degradation kinetics and/or biogas potential caused by disintegration of cells and reduction of the particle size
- \rightarrow efficient capacity use of the digester (small plants, high loading rate)
- avoiding of floating and sinking layers
- enhancement of the management and automation of the feed-in (stirring, pumping)
- change of viscosity and change of mixing properties
- challenge for designer, manufacturer and operator of disintegration units is the proof of the efficiency changes in cost and energy under full scale conditions

Disintegration on Agricultural Biogas Plants

Disintegration – Methods Overview

Physical Methods

- disintegration by size reduction or milling
- thermal treatment with hot water, steam or hydrolysis with heat and steam
- microwaves and ultrasound treatment

Chemical Methods

• utilization of acids or bases, oxidation

Biological Methods

- utilization of microorganisms as additives for ensiling (substrat's conservation) to minimize storage loss
- hydrolytic microorganisms or enzymes e.g. for substrates with high content of proteins or ligno-cellulose

Dis-/Advantages of Disintegration

- Enhanced biogas production
- Utilization of excess heat (e.g. CHP unit) is positive for energy balance
- Optionally the energy consumption of agitators and pumps can be reduced
- Additional demand on thermal or/and electrical energy
- Additional costs (investment, costs of operation)
- Additional risk of technical failure
- The risk of acidification could appear, if the feed-in frequency of pretreated substrate is too low
- Disintegration + shortened hydraulic retention time / increased organic loading rate → changes have to be made carefully and parameters of the effluent should be analyzed to avoid process failure or capacity overload
- Experiences in practice are often limited to a few biogas plants, except for macerators

Disintegration Technologies in Germany

Operator´s survey – biogas sector; DBFZ: Stromerzeugung aus Biomasse, 03MAP250, 06/2013 (data 2012)

> Disintegration technologies in operation on German biogas plants

- Appr. 7500 biogas plants were operated in Germany in 2012
- 6909 biogas plants got a questionnaire of DBFZ
- 980 operators gave a feedback
- 148 disintegration technologies were stated for 123 biogas plants

Disintegration Technologies Impacts on Biogas Process

Discontinuous AD Acceleration or Enhancement

substrate specific methane yield - batch-trial

duration ->

acceleration is not interesting for biogas plants with long hydraulic retention time or easy degradable substrates

Britt Schumacher et al., IBBA-workshop 10.09.2015, Malmö, Sweden

methane yield ->

Continuous AD Enhancement – losses – process failure

substrate specific methane yield - continuous trial

duration ->

methane yield ->

Dis-/Advantages of different scales & tests

	Lab batch	Lab conti	Full scale
Time requirement	~ 35 d	month	month
Amount of substrate	low	medium	high
Substrate ´s quality	high	high/varying	varying
Costs	low	medium	high
Parallels	easy	manageable	seldom
Process stability/ synergistic effects	no	yes, partially	yes
Rheology (Impact of mixing detectable)	no	??	yes
Lack of nutrients/ inhibition detectable	no	yes	yes
Mono-fermentation	no	yes	yes
changes in gas yield are detectable	small	small/medium	large
Relevance of results?	low	medium	high

Conclusion – Impacts on Biogas Process

- Two effects of disintegration: acceleration and/or enhancement of the conversion of substrate
- Losses or process failure are also possible
- The effects are dependent on the composition of the substrate and the disintegration method
- Acceleration is not interesting for biogas plants with long hydraulic retention time or easy degradable substrates, because non-treated substrates might reach the same degree of degradation
- Acceleration might be interesting for biogas plants with short hydraulic retention time or hardly degradable substrates and/or the wish of capacity expansion
- A real enhancement of the biogas yield is hardly to achieve
- Due to varying mixing, lab- and full-scale trials might show different results

Disintegration Technologies Impacts on Profitability

Various samples for German biogas plants

1					
XII: biowaste plant 600kW, 8000h	43,30%		29,63%	21,19%	5,88%
XI: biomethane plant 1333 m ³ i.N./h	32,13%		54,92%	11,	45% 1, <mark>51</mark> %
X: 600kWel, 8000h, 90% maize 10% manure	27,73%		52,88%	15,02%	4,37%
IX: 600kWel, 7700h, 90% maize 10% manure	29,83%		50,15%	15,32%	4,70%
VIII: 600kWel, 8000h, 65% maize 35% manure	25,93%		55,93%	14,05%	4,09%
VII: 600kWel, 7700h, 65% maize 35% manure	26,75%		55,30%	13,74%	4,21%
VI: 190kWel, 8000h, 65% maize 35% manure	30,31%		47,26%	17,60%	4,83%
V: 190kWel, 7700h, 65% maize 35% manure	32,48%		44,28%	18,07%	5,17%
IV: 75 kWel, 8000h, 65% maize 35% manure	40,90%		33,97%	18,61%	6,52%
III: 75kWel, 8000h, 95% cattle manure 5% maize	43,91%		26,29%	22,63%	7,18%
II: 75kWel, 7700h, 65% maize 35% manure	44,15%		29,24%	19,57%	7,04%
I: 50kWel, 8000h, 95% cattle manure 5% maize	50,13%		20,33%	21,43%	8,11%
0%	10% 20% 30%	40%	50% 60% 70%	6 80% 90%	100%
Capital-related costs	consumption-related co feedstock, energy dema	sts (e.g. and)	operation-related costs (manpower requirement, service and maintenance)	other costs (e.g. insuran	ce)

Source: M. Trommler (2011), Nachhaltige Biogaserzeugung in Deutschland – Bewertung der Wirkungen des EEG, Endbericht, Förderkennzeichen 10NR034.

Investment depends on the manufacturer and the throughput (m³/h or t/h)

Exemplary calculation - assumptions

- 1. 500kWel CSTR, new constructed biogas plant (01.01.2016)
- 2. Calculation of production costs of electricity/investment calculation (annuity method VDI 2067)
- 3. Invest cutting mill: 2*15.000€ = 30.000€
- 4. Invest thermal-pressure-hydrolysis (TPH): 500.000€
- 5. Lightweight construction depot for straw: 200.000€
- 6. Costs cattle manure: 0€/t FM
- 7. Costs straw: 80€/t; 100€/t; 120€/t FM
- 8. Revenue of surplus heat from CHP: 3 €ct/kWh th
- 9. Utilization of rejected heat of CHP for TPH, rise in heat demand for the whole biogas plant from 20% to 40% for TPH.
- **10**. Marketing of surplus heat: 50%

Exemplary calculation - assumptions

11. Gas yield cattle manure (KTBL): 16,8 m² CH4 N/t FM

- 12. Gas yield straw (KTBL) cutting mill: 162,54 m² CH4/t FM
- **13.** Gas yield straw TPH: 180,42 m² CH4/t FM (enhancement compared to cutting mill: 11% (Schumacher et al.))
- 14. Mix of substrate (fresh matter related): 7% straw, 93% cattle manure

VDI 2067: Economic efficiency of building installations – fundamentals and economic calculation, Beuth Verlag, Sept. 2000

KTBL: Faustzahlen Biogas, 2013

- CSTR continuous stirred tank reactor
- CHP combined heat and power plant
- FM fresh matter
- th- thermal

Schumacher et al.: Disintegration in the biogas sector – Technologies and effects, In: Bioresource Technology. Bd. 168, p. 5, 2014

Exemplary calculation

Economical Asessment - Production costs 500kWel biogas plant

Conclusion – Impacts on profitability

- Mechanical pre-treatment is State-of-the-Art, but energy demand as well as operational costs are dependent on the substrate and should be reduced
- High expectations in Thermal-Pressure-Hydrolysis (TPH) etc., but the high energy demand, high invest and technical design are challenging

Conclusion

- disintegration: can lead to accelerated and/or enhanced conversion of substrate or losses of substrate
- case-by-case calculations have to be made for every biogas plant, to reveal the limits of profitability
- variables are e.g.:
 - composition of substrate/substrate's mixture,
 - substrate´s costs (logistics),
 - available treatment units (e.g. invest, its energy consumption, wear and tear),
 - reactor design (including mixing),
 - hydraulic retention time,
 - usage of digestate (logistics) etc...

Thank you for your attention!

Contact

gemeinnützige GmbH

Dr. Britt Schumacher Tel. +49 (0)341 2434 - 540 E-Mail: britt.schumacher@dbfz.de **DBFZ Deutsches Biomasseforschungszentrum** gemeinnützige GmbH

Torgauer Straße 116 D-04347 Leipzig Tel.: +49 (0)341 2434 - 112 E-Mail: info@dbfz.de www.dbfz.de