Deutsches Biomasseforschungszentrum DBFZ gemeinnützige GmbH

Biogas production on the way towards competitiveness – process optimization options and requirements Jan Liebetrau

4th Inter Baltic Biogas Arena Workshop Esbjerg, 25 – 26 August 2016

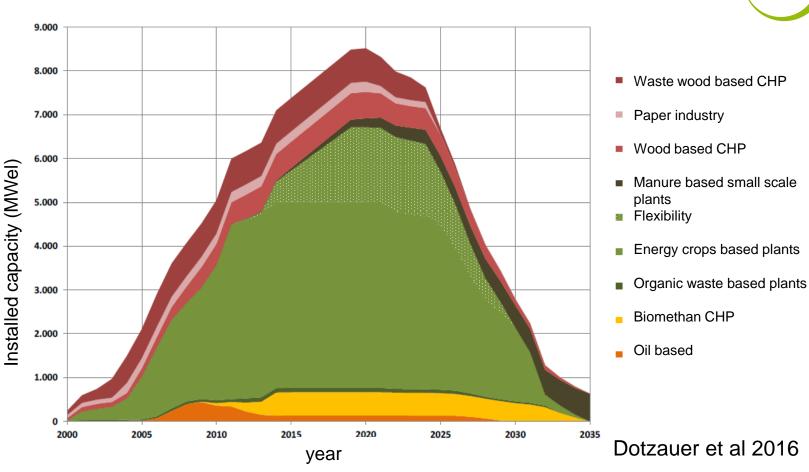
Background

Competitiveness – within which criteria?

Cheap electricity and heat?

Cheap waste treatment?

GHG mitigation?


Circular economy?

Options:

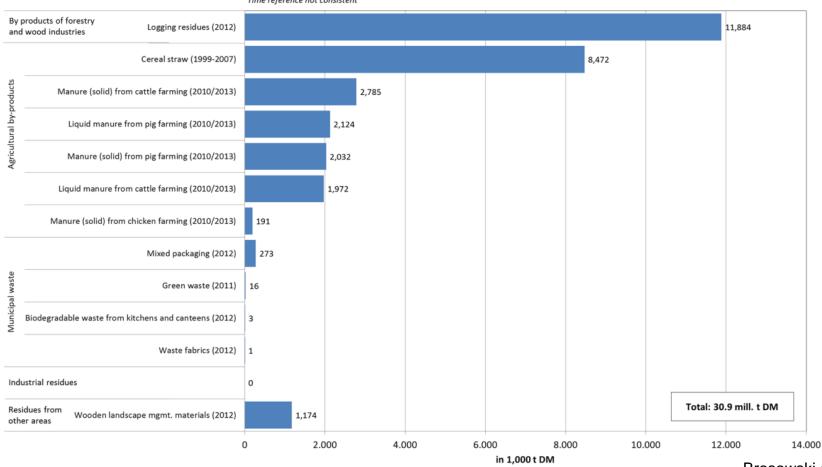
Optimization of cost structure (e.g. substrates, technology)

Generating new income (electricity markets, heat, material production)

Background – Germany perspective

- Political support currently rather low, future perspective highly unclear
- Discussion about time beyond Feed in tariffs has started new economic perspectives are needed –and/or relevance for safe electricity provision has to be proven

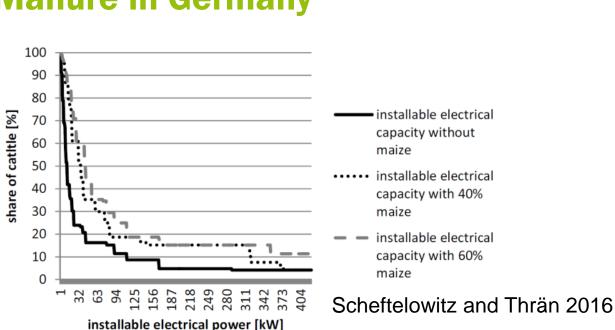
Substrates


Biogas plants cost structure

- Different situation in different plant configurations
 - High share of costs for energy crops (agricultural plants)
 - High investment costs (in particular waste treating plants)
 - High specific investment costs (manure based plants)
- High maintenance and replacement costs (effect of depreciation is limited)
- Increasing requirements from authorities
- Difference between feed in tariff and market price is for energy crop based and manure based plants currently not conceivable
- Waste based plants on the free market difficult

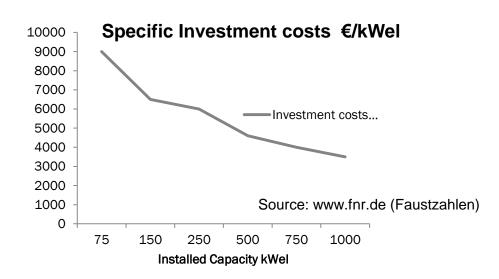
Residue availability in Germany

UNUSED TECHNICAL BIOMASS POTENTIALS FROM WASTE AND RESIDUES IN GERMANY


Summary

Time reference not consistent

Brosowski et al 2015


151,1 Mill.t Potential, 65 % usable, 69 % in use (30.9 Mill t DM available) Use of waste is not easy: examples glycerin, stillage, chicken manure

Manure in Germany

Cheap substrate (low biogas potential) – but small plants Not easy to unlock the potential, easy accessible amounts are in use

Regional effects - adding maize adds problems!!

Substrate characteristics

Municipal solid waste

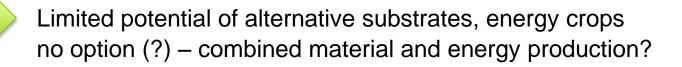
Separately collected biowaste

Kitchen waste, industrial residues

Agricultural residues, food processing

Energy crops

+ _____


Content of impurities (Sand, plastics) Quality of end products (e.g. Heavy metals) Necessity of pretreatment Water content Homogeneity Gas potential Structure, porosity

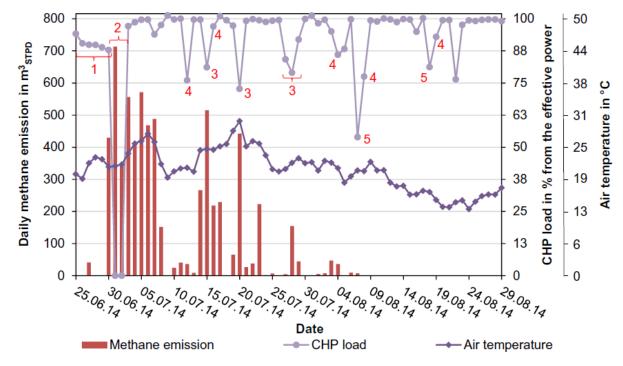
Technical requirements and requirements from authorities

Residue/ waste materials?

- In Germany substitution of energy crops in significant amounts difficult
- Putting incentives on the market might lead to replacement in other markets
- Regional effects are important to monitor
- But: currently accessible (technical and economic) waste streams are in use (RESA is supporting this for years)

Plant economics in comparison

	Waste	Manure	Energy crops	
Capacity (kWel)	1200 (534 Av.out)	75 (68.5 Av out)	1 000 (456 Av.out)	
Investment costs €/kWel	12700	6550	5500 (4600)	
Substrate costs €/t	-34	33 maize, 1 manure (transportation)	35 maize	
Heat utilization (% excess heat) 3 c€/kWh	60	20	56	
Own heat demand	30	60	20	
Substrates	Biowaste	15 % Maize, 85% manure	60% maize, 30 cereal silage, 10 % manure	
Production costs (c€/kWh)	16,77	25,39	20,37	


Barchmann, DBFZ, 2014 unpublished 10

Biogas production on the way towards competitiveness – 2 aspects of plant optimization

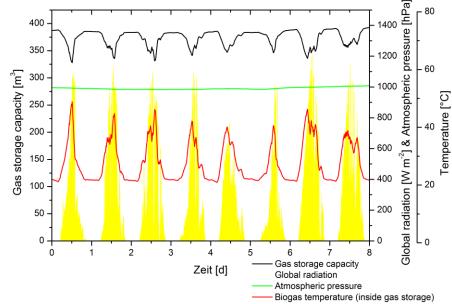
Technical challenges: Losses on biogas plants

- 1 ... Power reduction of CHP 2 caused by the change of an agitator of the digestate storage
- 2... CHP shutdown; biogas flare in operation; caused by flushing of the digestate storage with biogas
- 3 ... CHP power reduction caused by overheating
- 4 ... CHP power reduction caused by maintenance
- 5 ... CHP power reduction caused by technical defects

Reinelt et al: Analysis of operational methane emissions from pressure relief valves from biogas storages of biogas plants Bioresource Technology, Vol. 217, 2016, Pages 257–264

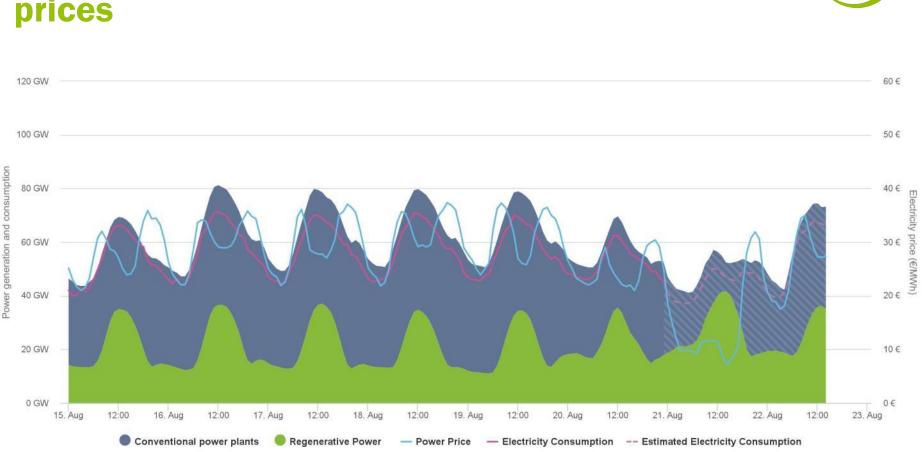
50 100 995 400 Atmospheric pressure in hPa 350 40 80 4 Temperature in °C 05 emission in m³ Gas storage capacity [m³] 300 60 250 200 40 Wethane 50 150 10 100 50 0 0 980 0:00 4:00 8:00 12:00 16:00 20:00 0:00 0 Time in hh:mm 2 3 5 6 7 Gas storage capacity Zeit [d] Methane emission — Temperature PRV Air temperature Atmosperic pressure Global radiation

Influence of temperature on gas storage capacity

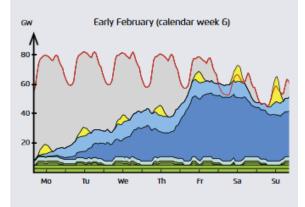

Weather conditions cause PRV release (Reinelt et al 2016)

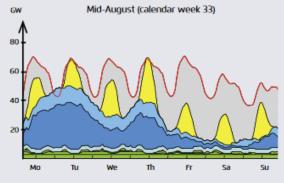
Reinelt et al: Analysis of operational methane emissions from pressure relief valves from biogas storages of biogas plants Bioresource Technology, Vol. 217, 2016, Pages 257-264

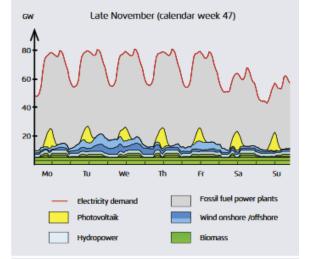
17 % difference in available gas storage capacity



Energy markets




Electricity market – energy provision and prices

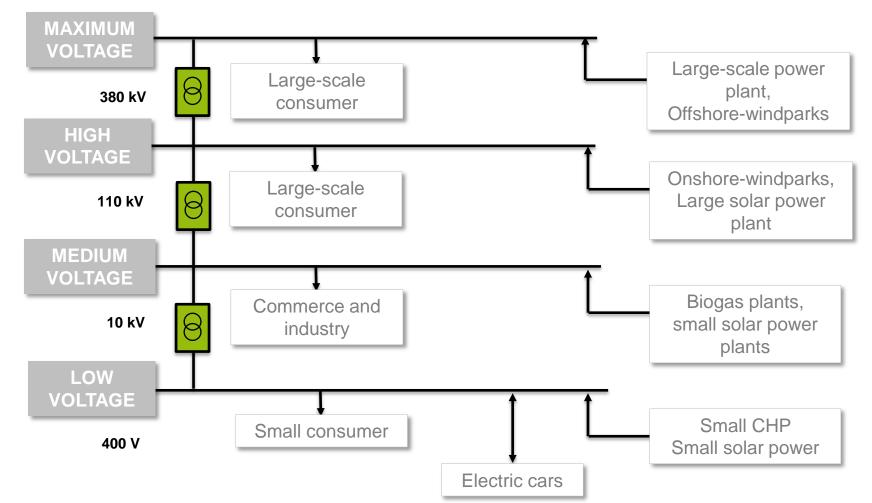

Agora Energiewende; Current to: 22.08.2016, 16:10

BFZ

Electricity Demand and Generation by Renewable Energy in Three Examplary Weeks in 2022

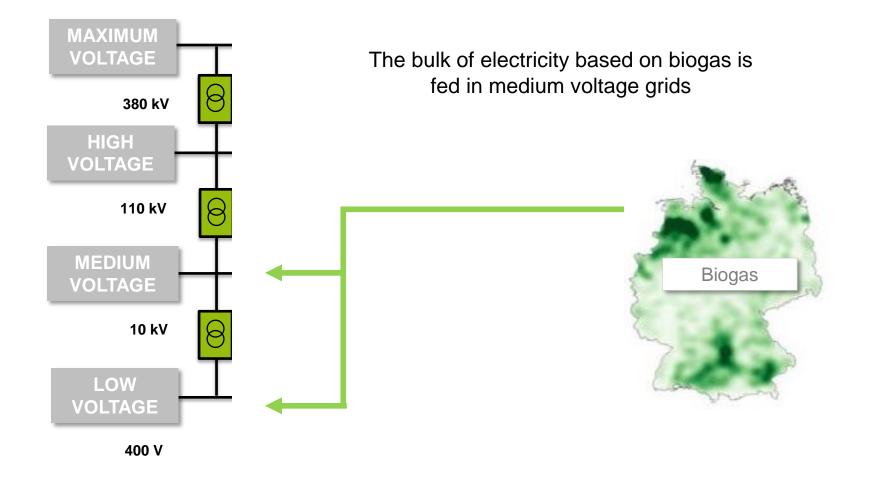
Electricity provision – future scenarios

Biogas is in comparison expensive


There will be times of excess energy and lack of energy

Flexibility will be a must for Biogas

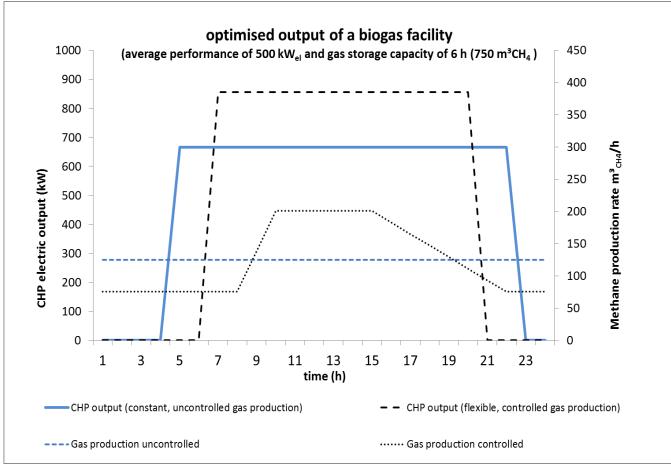
Renewables feed-in into power grids



Source: own illustration after www.energie-lexikon.info

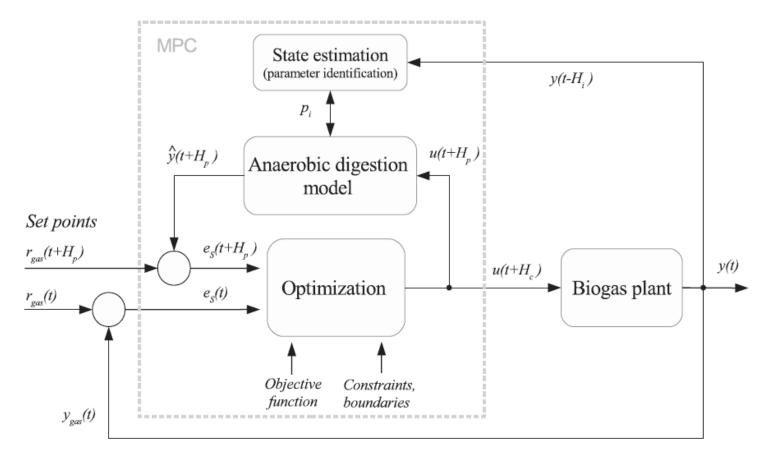
pirctures: Uwe Schlick/pixelio.de (Solar), Martin Dotzauer/DBFZ (Biogas and maps), Petra Bork/pixelio.de (Wind)

Renewables feed-in into power grids



Case study -

control of biogas production rate


Effect of manipulated gas production rate

Thrän et al 2015

Process control

(Mauky et al: Chem. Eng. Technol. 2016, 39, No. 4, 652–664., DOI: 10.1002/ceat.201500412

Set variable: Controlled process variable:

substrate and feeding amount gas storage filling level

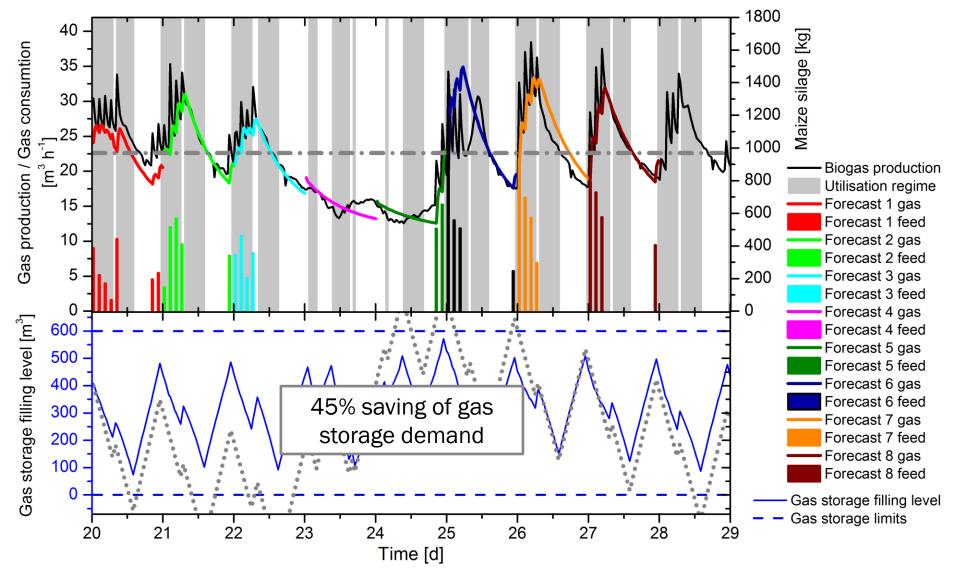
Demonstration test

DBFZ- Pilot plant facility

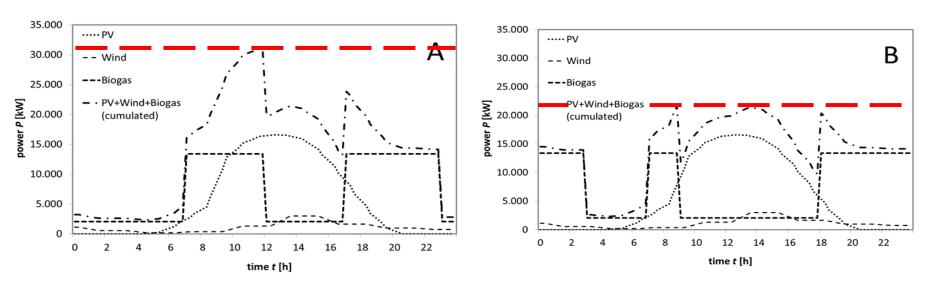
Main digester: 190 m³ (165 m³ reaction volume)

Substrates:

- Corn silage,
- Cow manure,
- Sugar beet silage


Source: DBFZ

Model predictive feed control (Plant A - DBFZ Research biogas plant)



(Mauky et al: Chem. Eng. Technol. 2016, 39, No. 4, 652-664., DOI: 10.1002/ceat.201500412)

Grid stabilization

Status quo of feed-in of renewables A intelligent feed in of power from biogas B

Trommler et al, 2016, subm.

Market prices and grid operation does not fit necessarily together

Matching both can reduce peak situations in distribution networks and therefore reduces:

Imbalances, losses, necessary extension of cables and transformers, feeding into higher level grids

Flexible Bioenergy as a regional balancing option for power distribution grids

Project: RegioBalance

DBFZ

Partner:

- DBFZ
- Energy2markets
- 50Hertz GmbH

e2m

Uniper Technologies GmbH (formerly E.ON Technologies GmbH)

Supported by:

- Federal Ministry for Economic Affairs and Energy
- Funding Agency: Projekträger Jülich

Bundesministerium für Wirtschaft und Energie

Project RegioBalance at a glance

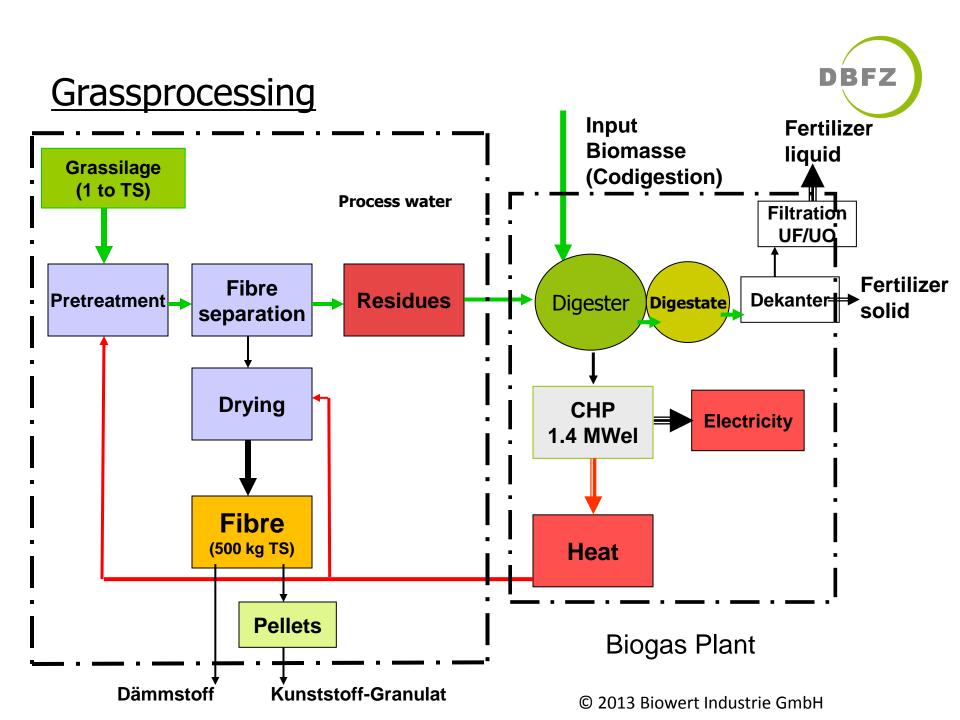
- Aim:
 - Can Biogas plants support balancing of distribution grids?
 - Show the ability of biogas plants to balance the operation of power distribution grids.
- Approach:
 - Scenario calculation for 2020 and 2025 based on real grid data for 2 grid parts, one in North on in East Germany
- Results: significant improvements for grid related parameter
 - Voltage band, Cable loading, Transformer station utilization rate, Losses, Backfeeding of active Power

Research Approach – 2) Characteristics of grid parts for substation districts in East and North Germany.

Substation District East Germany		Substation District North Germany			
Grid type: multiple ring network		Grid type: radial network with rings			
Total line length I: 17 km		Total line length I: 83 km			
Connected load:		Connected load:			
Photovoltaics	29 MW	Photovoltaics	12 MW		
Wind	0 MW	Wind	42 MW		
Biogas	6.7 MW	Biogas	16 MW		
Other renewable energy	7 MW	Other renewable energy	0 MW		
Conventional Energy	12 MW	Conventional energy	0 MW		
Maximum demand / thereof 30 %: 14 MW/4.2 MW All calculations are conducted with a minimum demand of 4.2 MW.		Maximum demand / thereof 30 %: 46 MW/ 14 MW All calculations are conducted with a minimum demand of 14 MW.			
Transformers: 2 x 31.5 MVA		Transformers: 1x 63 MVA, 1 x 50 MVA, 1 x 40 MVA			

Research Approach – 1) Scenario Framework for grid calculation


Scenario	Biogas plants P _{el} > 200 kW	Increase of Power by Photovoltaics	Increase of Power by Wind onshore	Increase of Power by Fossil based CHP units	Reduction of Gross electricity consumption	Power-to-Gas
Unit	[%]	[%]	[%]	[%]	[%]	[-]
l 2015 Status quo	Individual value pool, po					
II 2020 Biogas unchanged compared to Scenariol	no amendments	132	134	111.8	92.7	
III a/b 2020 Biogas 100 % load	200	132	134	111.8	92.7	
IV a/b 2025 Biogas 25 % load	200	165	168	113.4	85.9	
V a/b 2025 Biogas 100 % flexible incl. PtG	200	165	168	113.4	85.9	1 plant with P _{el} = 6.3 MW



Combined material production and energy provision

Combined energy and material production

The BIOWERT Circle

Conclusion -Biogas production on the way towards competitiveness

Alternative substrates require close look on overall conditions

Future electricity market and improved heat utilization can help to improve economics, biogas has also a valuable relevance for grid stabilisation

Combination material and energy production needs to become more often applied

INVITATION AND CALL FOR ABSTRACTS

III. Conference on "Monitoring & Process Control of Anaerobic Digestion Plants"

Present your work and submit an abstract until Sept 20, 2016!

EARLY

INVITATION AND CALL FOR ABSTRACTS III. Conference on "Monitoring & Process Control of Anaerobic Digestion Plants"

TOPICS OF THE CONFERENCE

- Sensor concepts & applications
- · Process simulation & control
- Monitoring and control of plant efficiency
- Practical experience of process monitoring and control
- Laboratory measurements: Reliability & validity
- Monitoring for safety and emission reduction purposes
- Microbiological analysis: Potential for process characterization and optimization

SPONSORSHIP

Participate as Sponsor & Exhibitor

SPECIAL EVENTS

March 30 — 31, 2017 Tagung AquaMak (in German): Aquatische Makrophyten – ökologisch und ökonomisch optimierte Nutzung (BMEL /FNR)

March 28, 2017 Workshop Record Biomap: Biomethane production in small and medium scale units (EU-HORIZON)

- Poster presentation award
- Exhibition featuring companies' products and services

REGISTER www.energetische-biomassenutzung.de

> CONTACT Diana Pfeiffer Phone: +49 (0) 341-2434-554 Email: diana.pfeiffer@dbfz.de

Funded by

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestas Our partners

DBFZ

Landesbetrieb Hessisches Landeslabor

Deutsches Biomasseforschungszentrum DBFZ gemeinnützige GmbH

Smart Bioenergy – innovations for a sustainable future Come and join us!

Contacts

Prof. Dr. mont. Michael Nelles Daniel Mayer Prof. Dr.-Ing. Daniela Thrän Dr.-Ing. Jan Liebetrau Dr.-Ing. Volker Lenz Dr.-Ing. Franziska Müller-Langer Dr. rer. nat. Ingo Hartmann DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH

Torgauer Straße 116 D-04347 Leipzig Phone: +49 (0)341 2434 – 112 E-Mail: info@dbfz.de www.dbfz.de