

Biogas perspective in Poland

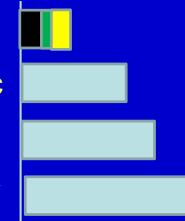
Jacek Dach

Institute of Biosystems Engineering Poznan University of Life Sciences, POLAND

23 August 2017, Poznan, Poland

Presentation thesis:

- During 2012-16 Poland was a market with very low subsidies for RES.


- In consequences most of biogas plants past or almost reach the state of bancrupcy.
- Biogas plants generate multiple possibilities to take additional money.
- Issue: Poland has one of the most innovative biogas market in the world.
- Potential of Polish agricultural biogas sector:
 3.5* 6 GW of electric power.
 *without maize silage used as substrate

Specific situation of Poland

Over 300 biogas plants (94 agricultural)
Very low price for energy from RES;

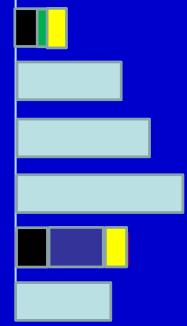
Comparison of the price for electric energy produced by biogas plants (*June 2016*).

Poland Czech Republic Romania Germany

43-51 euro/MWh

138 euro/MWh

182 euro/MWh


200-270 euro/MWh

Specific situation of Poland

Over 300 biogas plants (94 agricultural)
Very low price for energy from RES;

Comparison of the price for electric energy produced by biogas plants (*June 2016*).

PolandCzech RepublicRomaniaGermanyPL - old systemPL - new system

43-51 euro/MWh *08/2017

138 euro/MWh

182 euro/MWh

200-270 euro/MWh

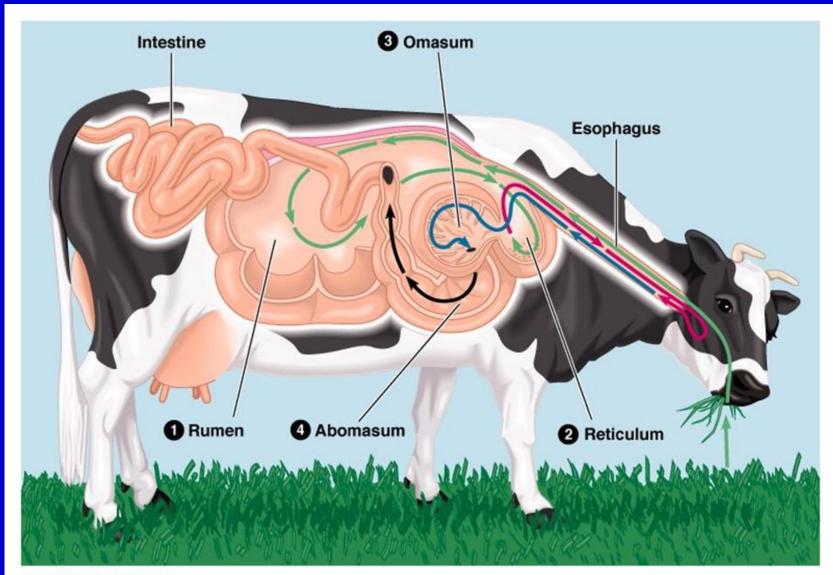
*118-147 euro/MWh *128 euro/MWh (<500 kW) ??? - auctions (>500 kW)

How do the Polish biogas plants improve profits?

- Heat from co-generation usage (subsidies: 29 euro/MWh).
- Production of fertilisers based on digestates (up to 240 euro/Mg).
- Use of biowaste as substrates (15-250 euro/Mg)
- Use of CO₂ from exhausted gases for greenhouses or cold rooms.
- Specific production related to biogas plants:
 * fish
 - ^ TISN
 - * schrimps
 - * worms

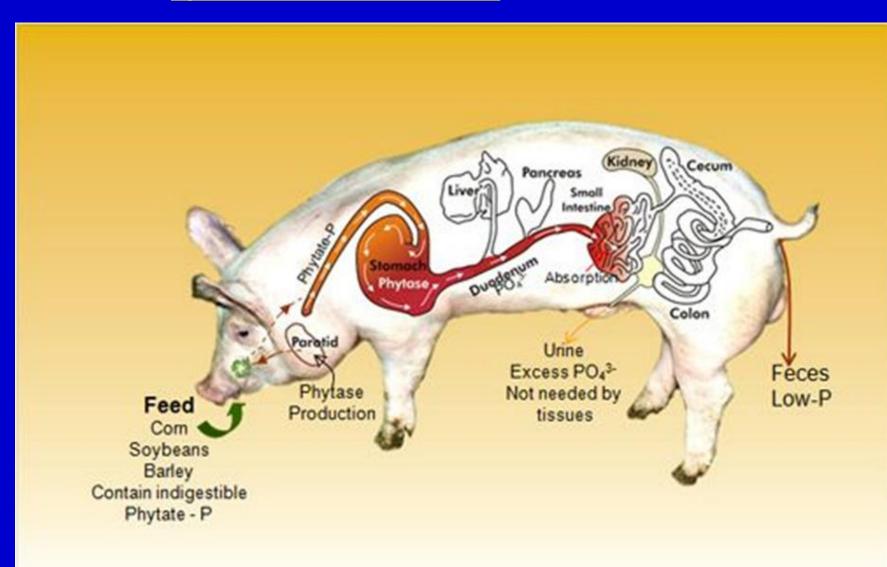
Heat used from combusted biogas for worms production and drying for animal feeding (1000 m² = 250 t livestock/month = 80 t of dryied worms)

http://www.hipromine.com/

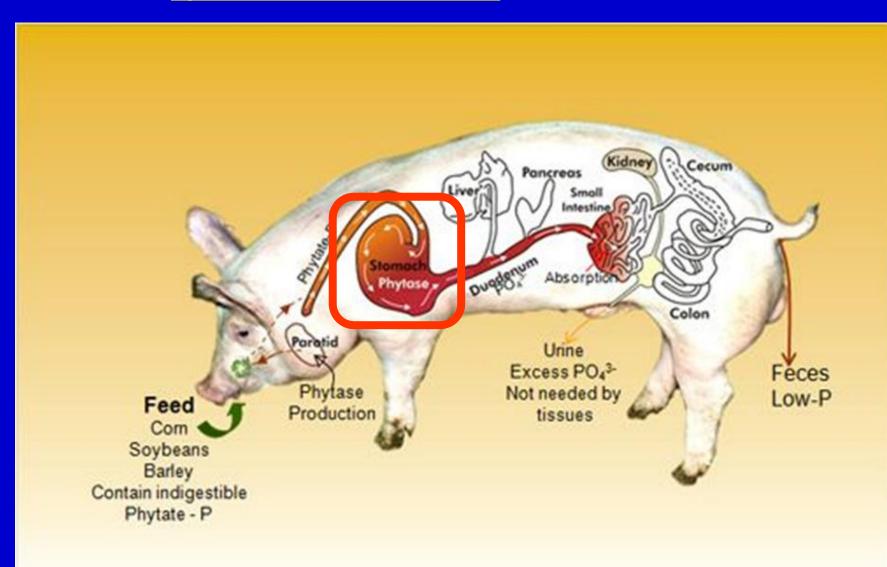

Trends in Polish biogas technologies:

- Modular installations from steel (unification and repetability, 1 MWe=10 containers, montage=6300 workinghours).
- 2. Deep digestion (no solid fraction in digestate = up to 27% higher CH₄ yield).
- 3. Low energy self-consumption.
- 4. Extremely large spectrum of substrates used (including bio waste).

Promissing scenario: waste-to-energy systems Dominating European technology (NaWaRo) uses mainly silages. Typical biogas plant is called "the conrect cow".



Stable feeding, limited changes, narrow spectrum of substrates.



©1999 Addison Wesley Longman, Inc.

Swine – scheme of digestion system in typical biowaste installation.

Swine – scheme of digestion system in typical biowaste installation.

Biochemical Processes Accelerator® (BPA) is an innovative system used to accelerate and augment the distribution of a wide range of substrates during methane fermentation process

NaWaRo

Dynamic Biogas

VS.

pH 7.2 – 7.8

Hydrolysis Acidogenesis Acetogenesis Methanogenesis

pH 3.2 – 4.8

Hydrolysis Acidogenesis Acetogenesis

Methanogenesis

pH 7.2 – 7.8

Methanogenesis

Hydrolysis Acidogenesis Acetogenesis

Hydrolysis+acidogenesis+acetogenesis = 12-36 h CH₃COOH concentration = up to 20000 mg/L

MILANT Test made on 2 biogas plants:

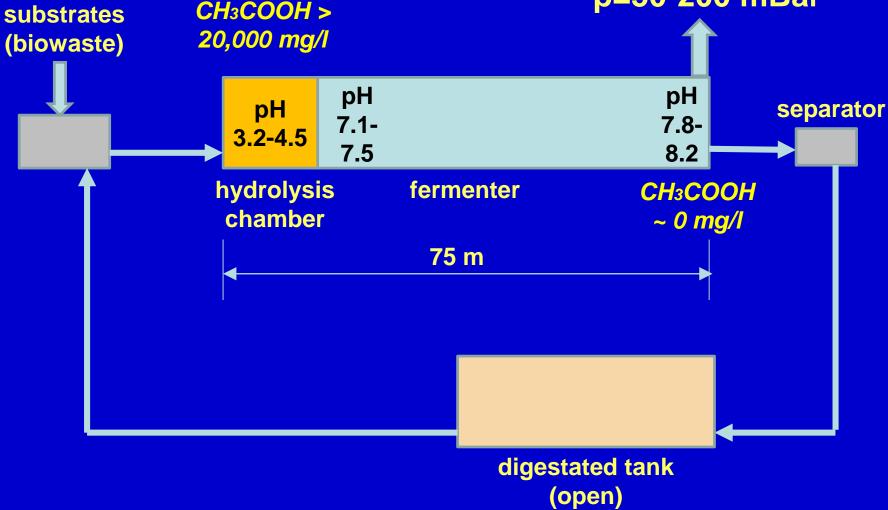
- Kloster Lehnin (2015)
- Dolgelin (2015/16)

Study case – Dynamic Biogas technology: agricultural biogas plant with steel fermenters and vertical mixing (999 kWe + 1050 kWt)

6 steel fermenters (1000 m³, with vertical mixers) Results for 2016: 8499 MWh (over 97% of theoretical efficiency)

1 fermenter (920 m³) feeds app. 250 kWe

Extremely efficient mixing system (5 kW) \rightarrow very homogeneous pulp, no upper layer presence (even in case of maize silage with 44% D.M.)


Study case – ProBioGas technology: agricultural-biowaste biogas plant in Miedzyrzec working with separated hydrolysis and long, narrow fermenters Agricultural-biowaste biogas plant (1200 kWe + 1300 kWt); 2 hydrolisys chambers (300 m³ each), 2 fermenters (3300 m³ each)

Hydrolysis (?) chamber → pH 3.2-4.5, very intensive H₂ production (in some pH levels), rapid destruction of substrates

Extremely intensive reactions just after feeding. Intensive CO₂ and (possible) H₂ production.

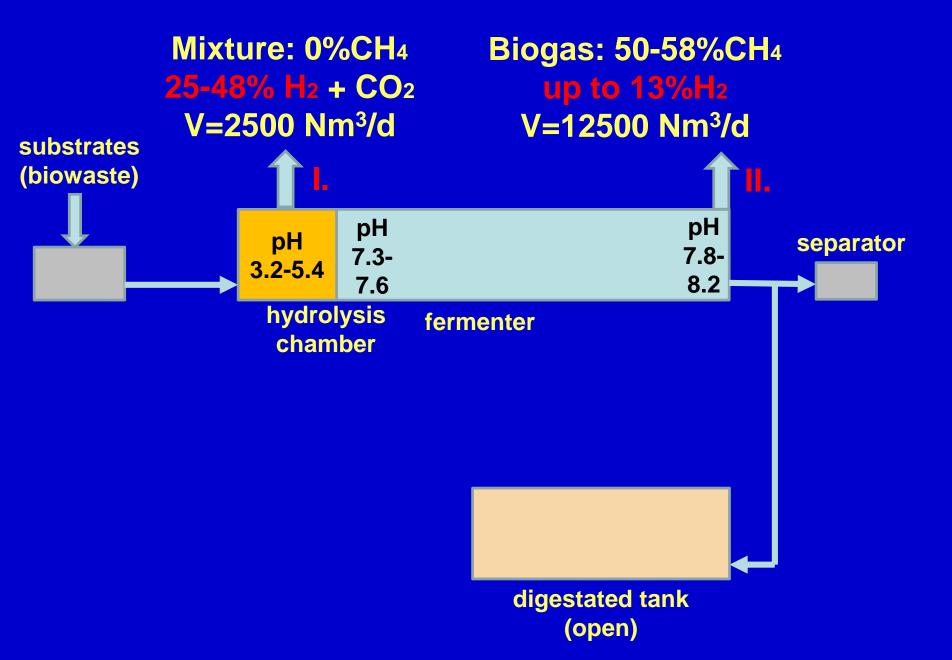
Biogas production scenario:

Biogas: 60-64%CH₄ V=12500 Nm³/d p=50-200 mBar

Pressure changes during hydrolyser feeding

Separation of digestates: very small amount of solid fraction. More than 90% of solid fraction is digested in hydroliser and processed directly into increasing of biogas production.

Typical technology working with maize silage: effect – big amount of solid fraction



Typical results:	Daily rates	t F.M.	% D.M.	t D.M.
	Apple pomace	22	26	5,72
	Potato pulp	6	15	0,9
	Distillery stillage	100	7	7
	Other biowaste	20	7	1,4

D.M. in total 15,02

Result: 545 m³ CH₄ / t D.M.

Hydrogen production scenario:

Required further research:

 Black box (how exactly is hydrogen produced?) Laboratory tests still do not follow real-scale efficiency).

- Energetic balance (more H₂ = less CH₄).

 Economic balance: which kind of production (CH4 / H2) is more profitable???.

- Hydrogen separation methods.

Conclusions

- Best practice: biowaste usage let to obtain green energy and clean environment.

- There is still huge potential for efficiency growth in existing installations.

- Polish biogas potential:
- can cover whole natural gas import or
- can replace 2 (planned) nuclear plants.

- Look for possibilities of usage of other products than energy: CO₂, H₂ and digested pulp.

Jacek Dach, jdach@up.poznan.pl

Thank you for your attention